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The ‘plug’ flow emerging from a long rotating tube into a large stationary reservoir
has been used in an experimental investigation of centrifugally unstable swirling jets.
A moderate Reynolds number, Re= 1000, was studied extensively, and swirl numbers,
S, the ratio of nozzle exit rotating speed to the mean mass axial velocity, were in
the range 0–1.1. Four regimes were covered: non-swirling jets with S = 0, weakly
swirling jets in the range 0 <S <Sc1, strongly swirling jets before vortex breakdown
with Sc1 <S <Sc2, and stable vortex breakdown for S > Sc2, where Sc1 = 0.6 and
Sc2 = 0.88.

Particular attention was paid to the dominant role of the underlying vortical flow
structures and their dynamic evolution. Kelvin–Helmholtz (K–H) instability in the
axial shear layer, generated by the axial velocity, leading to vortex ring formation,
dominated non-swirling and weakly swirling jets. After the introduction of rotation,
the combined axial and azimuthal shear layers became unstable to a modified form of
K–H instability. For weak swirl, tilted vortex rings evolved downstream. For strongly
swirling jets, vorticity in the azimuthal shear layer, formed by the azimuthal or swirl
velocity, grew and became comparable with vorticity in the axial shear layer. The flow
lost its axisymmetry and strong helical waves with m =+2 or +3 replaced vortex rings
as the dominant vortex structure before vortex breakdown. After breakdown, strong
helical waves with m =+1 and +2 coexisted, with m =+1 being dominant. Here,
m is the azimuthal wavenumber, and the positive sign represents the counter-winding
direction for helical waves. In the present experiments, the phase speed of each helical
wave was the same as the rotation rate of the nozzle exit, in both direction and
absolute value.

Based on a spectral study of the flow fields in natural, forced and transient
experiments, we suggest that the helical wave m =+2 for strongly swirling jets before
vortex breakdown and m = +1 after breakdown were self-excited/globally unstable, a
behaviour identified as a super-critical Hopf bifurcation. Also it is suggested that the
onset of the unstable global mode m =+1 after vortex breakdown was related to the
existence of a region of local absolute instability in the wake region of the breakdown
structure. This self-excited oscillation first dominated the inner shear layer between
the central reverse flow and the conical jet, giving the breakdown the appearance of
a spiral one, and then grew and incorporated the outer shear layer between the jet
and the ambient fluid. After that, the wake region around the stagnation point served
as the wave maker and imposed its frequency of oscillation on the whole flow. An
attempt is made to reconcile these results with existing theory and experiments.
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1. Introduction
Swirling jets represent one of a handful of basic flows that, while of great practical

significance, allow the fundamental study of complex but generic dynamical processes
and their interactions. They feature prominently in a variety of propulsion systems
involving turbomachinery, such as jet engines and turbo-pumps. In combustion
applications, their ability to create reverse flow regions near the jet nozzle has been
exploited for the purpose of swirl-stabilizing the flame. The efficiency of chemical
reactors and mixing devices is enhanced by making use of the faster spreading and
more rapid mixing of the jet fluid with its surrounding by swirling compared with non-
swirling jets. Atmospheric conditions can give rise to swirling flows with both wake
and jet-like axial velocity profiles, e.g. tornados, dust devils and water-spouts. They
are necessary feature of aircraft wake flows that have been known to cause damage to
following aircraft.

In all of the above applications, the need for performance enhancement and
optimization makes desirable an improved understanding of the interaction of
the competing dynamical mechanisms that arise in swirling jets and govern their
evolution. Their axial velocity profiles allow shear-induced instabilities similar to those
encountered in non-swirling flows. However, the additional presence of swirl results
in an azimuthal shear layer and centrifugal instability when the circulation decreases
outwards. Finally, under certain conditions, i.e. when the swirl rate is high enough,
swirling jets are known to produce vortex breakdown events. Improved understanding
of these mechanisms and their mutual coupling is expected to pave the way for the
development of passive and active flow control strategies employing sound, changes in
nozzle geometry and motion, perhaps using micro machines.

The objectives of the present research are threefold. The first objective is to study
the basic phenomenon of swirling jets, over a wide range of swirl number, S, at a
moderate value of Reynolds number, Re. These dimensionless parameters are defined
in § 2.2. By using high-resolution and real-time digital particle image velocimetry
(DPIV), the velocity and vorticity fields have been precisely measured both on a
central, vertical section of the jet and on horizontal slices at axial locations, x, from
the nozzle exit x = 0 and x =0.5D, D, 2D (D = 3.82 cm is the diameter of the
nozzle exit). The second objective is to study the interaction and competition between
different instability mechanisms, and identify the most unstable mode in the flow
as S varies. Lastly, evidence is given regarding the convective/absolute, local/global,
linear/nonlinear natures of the instabilities observed in swirling jets, aided by the
spectral study of natural, forced and transient experiments.

An introduction to the basic physics of swirling flows is given, for example, by
Gupta, Lilley & Syred (1984), while more advanced aspects, pertaining mostly to
confined flows in slightly tapered tubes, were reviewed by Hall (1972), Leibovich (1978,
1983) and Escudier (1987). Breakdown in a uniform, jet-like, swirling approach flow
is characterized by a transition to a wake-like velocity profile with a stagnation point
followed by a reverse flow and/or highly turbulent region. Up to now it was thought
that two forms of vortex breakdown exist as the near-axisymmetric and the spiral
type, first described by Lambourne & Bryer (1961), although a number of other types
have been observed, e.g. by Sarpkaya (1971). However, such a seemingly fundamental
categorization is by no means certain and is open to further interpretation, as will be
shown.

The design of swirl generators in practice has used one of the following principles
for swirl generation: (i) adjustable vanes, e.g. Harvey (1962) and Panda & McLaughlin
(1994), (ii) tangential inflow introduced into a pipe with an axial through-flow, e.g.
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Chigier & Chervinsky (1967) and Escudier, Bornstein & Maxworthy (1982), (iii) fully
developed pipe flow emerging from a long rotating tube with an exit contraction
e.g. Billant, Chomaz & Huerre (1998) and Loiseleux & Chomaz (2003) or without a
contraction as in the present work, and (iv) flow through a rotating, perforated plate,
etc.

Before the late 1980s, the major focus of most experiments was to measure the time-
mean flow fields and turbulent stresses, and expose some of the interesting characteri-
stics of swirling jets, such as the displacement of the location of the maximum axial
velocity from the axis, documenting the existence of a strong reverse flow near the
centreline of the jet, the change in the magnitude of the velocity components with
increase of the swirling velocity, and the high spreading rate of such jets. Only
recently have researchers begun to pay more attention to the dominant role played
by underlying vortical flow structures and their dynamical evolution, e.g. Panda &
McLaughlin (1994) and the LadHyX group at the Ecole Polytechnique, Billant et al.
(1998) and Loiseleux & Chomaz (2003).

Many theories of vortex breakdown have been proposed based on a number of
different mechanisms. Ludwieg (1960, 1961, 1964) was the first to suggest that vortex
breakdown might be a finite-amplitude manifestation of the linear instability of a
swirling jet-like core flow in an annulus. Later, Brown & Lopez (1990) related the
onset of vortex breakdown to the generation of negative azimuthal vorticity which
depended initially on the viscous diffusion of the axial vorticity/swirl velocity in the
vortex core. Mahesh (1996) presented a very simple criterion for vortex breakdown for
both incompressible and compressible flows, in which the breakdown was assumed
to happen when the axial pressure rise exceeded the upstream streamwise momentum
flux.

Squire (1962) was the first to attempt to connect vortex breakdown with the
theory of inertial wave propagation. Benjamin (1962) extended this concept and des-
cribed vortex breakdown as a finite transition between super-critical upstream and
sub-critical downstream states in an axisymmetric flow. Wang & Rusak (1997) found
that the axisymmetric breakdown evolved as the result of the loss of stability of the
columnar base flow when the swirl rate of the incoming flow exceeded a critical level,
a result that is, as they state, strongly related to the critical state concept of Benjamin
(1962). Further work on this problem can be found in Benjamin (1962), Leibovich
(1970), Leibovich & Randall (1973), Randall & Leibovich (1973), Leibovich &
Ma (1983), Kribus & Leibovich (1994), among others, to support the hypothesis
that the axisymmetric-bubble-type breakdown phenomenon is associated with the
development of large-amplitude, axially symmetric waves in a basic super-critical
vortex flow. Experimental support can be found in Maxworthy, Hopfinger &
Redekopp (1985), where propagating nonlinear axisymmetric solitons, with a large
enough amplitude, were found to form co-rotating, counter-winding spiral tails as they
propagated and had a morphology identical to that of a stationary vortex breakdown.

Escudier et al. (1982) presented arguments, based on their experimental obser-
vations, that there is a clear separation of the roles of flow criticality and flow stability.
It was proposed that the state of criticality of the flow determines the basic, wake-like
character of the downstream flow, and that the instability waves are a superimposed,
but important, fine detail. The location of breakdown in the flow can be predicted
by the transition from a super-critical to a sub-critical state to form an axisymmetric
bubble. When this solitary wave or bubble reaches a certain critical amplitude,
the wake-like velocity profile created in its interior becomes unstable to a discrete
spectrum of spiral disturbances which grow rapidly, and it is these disturbances that



118 H. Liang and T. Maxworthy

are responsible for the appearance of a breakdown dominated by spiral waves, so that
often any sense of an axisymmetric wave is lost, although it still exists in the mean
flow. This point of view and its extensions (see below) has been supported recently
by the computations of Ruith et al. (2003).

During the past two decades, concepts of convective (CI)/absolute (AI), local/global
and linear/nonlinear instabilities in open shear flows have been established by Fuchs,
Ko & Bers (1981), Koch (1985), Chomaz, Huerre & Redekopp (1988), Monkewitz
(1988), Huerre & Monkewitz (1990), Pier, Huerre & Chomaz (2001), Pier & Huerre
(2001) and Huerre (2001), among many, and applied to swirling jet/wake shear
layers, e.g. Martin & Meiburg (1994), Delbende, Chomaz & Huerre (1998), Loiseleux,
Chomaz & Huerre (1998), Lim & Redekopp (1998), Olendraru et al. (1999), Loiseleux,
Delbende & Huerre (2000), Yin et al. (2000), Olendraru & Sellier (2002), Gallaire &
Chomaz (2003a, b) and Ruith et al. (2003). AI was found to be significantly enhanced
by the presence of the swirl in linear instability analysis of shear layers in centrifugally
stable and unstable jets and wakes. It should be noted that the following review is
given only for rotating free jets and wakes which have no external swirl or axial flow.

It appears, based on the major differences that have been observed, that one
can divide existing studies into two groups depending on subtle differences in the
inlet velocity profiles. Some inlet profiles had axial and azimuthal shear layers that
intimately overlapped at a radius close to or coincident with the edge of the inlet,
e.g. in calculations by Martin & Meiburg (1994), Lim & Redekopp (1998), Loiseleux,
Chomaz & Huerre (1998), Loiseleux, Delbende & Huerre (2000), Gallaire & Chomaz
(2003a), Ruith et al. (2003) and also in the present experiments. For centrifugally
unstable jets, AI was triggered via the axisymmetric mode m =0 and then co-rotating
counter-winding helical waves appeared as the swirl difference increased, e.g. m = +1
to +5 with k > 0 was observed by Loiseleux et al. (2000) in calculations based on an
idealized swirl velocity profile with plug flow considered earlier by Martin & Meiburg
(1994) and Lim & Redekopp (1998). For the case of centrifugally destabilizing wakes,
counter-rotating co-winding helical waves, e.g. m =+1 to +8 † with k positive for
a screened Rankine vortex with plug flow studied by Gallaire & Chomaz (2003a),
were found to be the most unstable modes and absolutely unstable (AU) as the swirl
difference increased. On the other hand centrifugally stable swirl differences for jets
led to AI via counter-rotating and co-winding helical waves, e.g. m = −1 to −5 for
Rankine vortex with plug flow calculated by Loiseleux et al. (1998). And centrifugally
stable wakes were calculated to become AU via co-rotating counter-winding helical
waves, e.g. m = −1 to −5 also for Rankine vortex with plug flow by Loiseleux et al.
(1998).

For instabilities in the above theoretical studies on centrifugally unstable jets
and centrifugally stable wakes, as well as in the present experimental investigation for
strongly swirling jets before and after vortex breakdown, the most absolutely unstable
modes observed were more aligned with the local mean vortex line. The Rayleigh
centrifugal instability is not relevant for these counter-winding helical waves but
rather a combination or competition of the Kelvin–Helmholtz (K–H) instability and
the generalized centrifugal instability of Ludwieg (1960, 1961, 1964) and Leibovich &

† When referring to the rotating jet or wake studies, the sign of m defined in experimental
investigations is based on the positive streamwise direction at the inlet both before and after
breakdown, whereas in many theoretical studies, the sign of m is reversed for wakes, since the
direction of the base flow is defined by the sign of the axial velocity difference. A detailed argument
can be found in Gallaire & Chomaz (2003b).
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Stewartson (1983). For swirling free jets after breakdown, the centrifugal instability
still exists between the jet and the stationary ambient, a region named the outer shear
layer in the present paper, but the wake region within the bubble breakdown structure,
named the inner shear layer, is in solid-body rotation and thus locally centrifugally
stable. The absolute nature of the counter-winding helix that is well known in the
bubble wake region, defined as m =+1 in experiments and m = −1 in theories, can be
modelled in first approximation by the Batchelor modes as in Delbende et al. (1998),
Olendraru et al. (1999) and Olendraru & Sellier (2002), but the physical underlying
mechanisms remain to be identified.

In the second major group of studies, inlet velocity profiles with the peak azimuthal
vorticity in the axial shear layer, due to the axial flow, were substantially displaced
from the location of the maximum axial vorticity in the azimuthal shear layer, due to
the swirl flow. For example, in the theoretical studies of Gallaire & Chomaz (2003b),
and experiments by the LadHyx group, Billant et al. (1998) and Loiseleux & Chomaz
(2003), the axial shear-layer instability covered the range from approximately r =0.9R

to 1.1R while the major part of the azimuthal shear layer covered the appoximate
range from r = 0.5R to 1.1R. In the calculation by Gallaire & Chomaz (2003b), a
counter-rotating co-winding helical wave, m = −2, was found as the only AU mode
for centrifugally unstable jets while centrifugally unstable wakes became AU via
co-rotating counter-winding spirals, m = −1 to −6, as the swirl differences increased.
In their experimental investigation of swirling free jets, Billant et al. (1998) observed
counter-rotating co-winding helical waves, m = −2 and −3, before breakdown which
agrees with calculations for centrifugally unstable jets by Gallaire & Chomaz (2003b).
These co-winding helical waves are similar to phenomena found in Taylor–Couette
flow with axial flow where the centrifugally induced pressure gradient is able to
stretch, bend and reorient the mean vortex lines (Ludwieg 1961, 1964). In their
experiments, Billant et al. (1998) also observed co-rotating counter-winding spirals
for flows after breakdown. These counter-winding modes are similar to those found to
be the most absolutely unstable after breakdown in the present experiments and for
centrifugally stable wakes in calculations by Loiseleux et al. (1998) and Ruith et al.
(2003).

Globally unstable behaviour has been related to the local instability of spatially
developing flows by the argument that in a linear system the bifurcation to a self-
excited global mode may be possible only after a sufficiently large area of the flow
has become absolutely unstable. Here the frequency of oscillation was determined by
that of the linear problem at the transition from convective to absolute instability
(see e.g. Koch 1985). More recently, this linear criterion has been found to be true
even for the nonlinear ‘steep-mode’ of Pier et al. (2001) and Pier & Huerre (2001)
(Huerre, private communication). This point of view updates the description of the
phenomena presented earlier by Escudier et al. (1982) and Maxworthy et al. (1985).
In this interpretation, as before, the axisymmetric breakdown is considered as a
super-critical to sub-critical transition. When the solitary wave or bubble reaches a
certain critical amplitude, with an AU region that is large enough, the flow becomes
globally unstable to asymmetric instabilities. These helical oscillations can become
self-excited and rapidly overwhelm the whole flow and the bubble transitions to one
of the spiral type. For swirl numbers well above critical, the global instability may
be controlled by nonlinearity, and the globally unstable mode may appear as soon as
there exists a point of AI, in the present case most probably around the stagnation
point after breakdown. As noted above, this kind of nonlinear oscillation is called a
‘steep mode’ in the theory of Pier et al. (2001) and Pier & Huerre (2001).
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Two classes of experiments are required, according to the theories reviewed by
Huerre & Monkewitz (1990), to decide if an observed oscillation is the consequence
of a self-excited/globally unstable mode, and in the present experiments an attempt is
made to follow these prescriptions. The first class contains ‘easy’ experiments, which
examine the steady-periodic behaviour of the flow and include: (i) a study of spectral
distributions to determine the presence of limit-cycle behaviour; (ii) determining if the
saturation amplitude versus the control parameter (such as the swirl number in the
present work with Reynolds number fixed) is consistent with dictates of the Landau
equation and with indications of a super-critical Hopf bifurcation; (iii) obtaining the
relationship between the flow response and the amplitude of steady-periodic low-level
external forcing at the suspected global frequency/mode number to identify whether
the flow is self-excited or just convectively unstable. These ‘easy’ experiments provide
only supporting evidence. A more positive proof that an unstable global mode has
emerged can only be furnished by including a class of ‘hard’ experiments, namely
transient analyses of the bifurcation.

2. Experimental setup and procedures
2.1. Apparatus

In order to supplement and verify the theoretic analyses and numerical computations
discussed above, an experimental program has been designed which can cover the
range of conditions of interest. This was accomplished in the apparatus shown as
an assembly drawing in figure 1. It consisted of a vertical swirling jet emerging into
a large stationary test tank. The test tank was designed to rotate independently;
however, this feature was not used in the present study. Tap water was used and
was always filtered before adding and mixing the particles used to track the flow and
record digital images. The water exiting the test tank was collected in a large reservoir
and then pumped to a five-gallon reservoir, which was suspended above the rotating
nozzle assembly to filter oscillations of the flow rate and provide a constant-head
inflow. The flow rate was controlled by several valves underneath the test tank and
measured by a flow meter located before the rotating nozzle assembly. The water
was recycled to maintain clarity and to save particles. Before the experiments, the
water was stored for at least one day to eliminate air bubbles and to reach a uniform
temperature.

The basic rotating nozzle subsystem is shown in more detail in figure 2. It consisted
of a rotating manifold containing a honeycomb of straws that both smoothed the
incoming flow and allowed it to be brought to a solid-body rotation within a short
axial distance. The swirl velocity component was imparted to the jet by means of a
motor and two concentric cylinders. The outer cylinder was fixed to the top of the test
tank and the inner rotating cylinder was held in the outer cylinder by radial bearings,
and rotated smoothly around the axis of the system. The rotation rate of the pipe
was maintained constant by a motor with feed-back servo control. The swirling jet
ended in a straight nozzle attached to the inner cylinder. Contracting nozzles have
been used in most experiments to produce a laminar and uniform non-swirling jet.
However experiments have also shown that the fully developed swirling jets coming
from such a nozzle, see e.g. Billant et al. (1998), have a central over-shoot in the axial
velocity within the vortex core. Under these circumstances the inflow conditions were
hard to control since each rotation rate gave a different axial velocity profile, which
must certainly affect the swirl number at which vortex breakdown was generated.
Because of this a smooth but non-contracting nozzle of diameter D = 1.5 in. was used
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Figure 1. Sketch of the experiment setup.

in the present experiments, even though it caused some slight non-uniformity and a
higher level of turbulence in the exit flow. In the first nozzle design, producing flow
A (figure 2a), the slight mismatch at the transition from the honeycomb to the nozzle
apparently caused a small over-shoot at the jet shoulder and higher turbulence level
in the shear layer, as documented in detail in Liang (2003) and Liang & Maxworthy
(2005). However this effect was suppressed by using an inner pipe with the same
diameter as the nozzle and straws with smaller inner diameter. The steel mesh was
removed from underneath the honeycomb, since it sometimes trapped air bubbles. In
this way, an improved laminar free-swirling jet, flow B (figure 2b), was generated and
used to analyse in detail the spatio-temporal development of the instabilities, while
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Figure 2. Details of the nozzle assembly and the dimensionless mean axial velocity of the
non-swirling flow generated at the nozzle exit x = 0: (a) flow A, (b) flow B.

flow A was used for preliminary visualization and mean flow measurements (also see
Liang & Maxworthy 2005).

The test tank was a large, transparent circular cylinder. A square tank surrounded
the cylindrical tank and was filled with water to eliminate optical distortion. Both
tanks were concentric with the upper nozzle assembly.

As shown in the basic configuration (figure 2), the rotating element was designed
to produce a jet with an initially uniform axial velocity and solid-body swirl or
azimuthal velocity, both with outer shear layers to bring the velocity to that of the
outer stationary flow. It should be emphasized that the relatively large size of the test
tank made the jet a nearly free one and the exit azimuthal shear layer was centrifugally
unstable by design when the jet rotated.

2.2. Control parameters

There are two independent control parameters for the swirling jet, flow rate and
rotation rate of the nozzle, which can be expressed in terms of true non-dimensional
independent parameters, Reynolds number Re and swirl number S. The Reynolds
number is defined as

Re = UD/ν (2.1)
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where the mean mass axial velocity, U =Q/πR2, is the flow rate Q divided by cross-
sectional area of the nozzle exit, and D =3.82 cm is the diameter of the nozzle exit,
R is its radius, D/2, and ν is the coefficient of kinematic viscosity of water. The swirl
number is defined as the ratio of the azimuthal velocity of the nozzle exit to U (also
known as the Taylor or inverse Rossby number), i.e.

S = ΩR/U (2.2)

Here Ω (s−1) is the rotation rate of the nozzle assembly. In the present investigation, a
moderate Reynolds number, Re= 1000±50, i.e. U = 2.60–2.88 cm s−1, was chosen for
most studies, and a broad range of swirl number, S = 0–1.1, was covered to observe
the phenomena of interest, e.g. vortex shedding, pairing, spiralling and breakdown.
Note that these are true independent parameters since they do not depend on any
measured values in the jet, as has been the case in some studies.

2.3. Instrumentation, data acquisition and processing

Basically there are two ways to measure flow field velocities. One is by inserting
probes into the flow but these certainly change the profiles when the flow is rotating
and can support inertial waves. Examples are hot-wire/film anemometers and Pitot
probes, which are thus undesirable for the measurement of swirling flows. Another
technique is to record the flow traced by particles and then calculate the velocity fields,
using either digital particle image velocimetry (DPIV) or laser-Doppler velocimetry.
DPIV is cheaper and more efficient, since it can record data over a slice of the whole
flow instead of one point at a time. DPIV is known to work for relatively slow flows,
such as the present swirling flow with a moderate Reynolds number 1000 and swirl
numbers not much larger than one.

In the present experiments, the light source was a 5 W argon-ion laser. The
laser sheet was generated by a function-generator-controlled mirror continuously
oscillating at 200 Hz, which provided an effectively instantaneous pulse containing a
high frequency scan. By changing the oscillation direction of the mirror, a laser sheet
perpendicular to the axis of the jet or a sheet that contains the jet axis could be
obtained. Reflections, the glow from dirty water and the tank structure could seriously
reduce the image quality. So the water used in the experiment was carefully cleaned,
the test tank was covered by black contact paper except for the visualization zone,
and all lights in the laboratory were turned off when recording data. Fluorescein was
injected into the flow at the rotating seal to visualize the flow and was illuminated by
the laser sheet. In this case, to maintain high photographic contrast, the water from
the test tank was not recycled. Still pictures and video recordings were taken.

In our laboratory we have developed a high-resolution DPIV system, called
correlation image velocimetry (CIV) (Fincham & Spedding 1997). By using a series
of sophisticated checking routines and by optimizing the particle size, brightness
and seeding density, time between frames, search area and correlation boxes, it is
possible to obtain velocity vectors accurate to approximately 1% and vorticity to
approximately 3% using a video-based system with a standard 768 × 484 CCD array
operating at the maximum of 30 frame s−1. The Plyolite particles chosen in our
experiment had good light reflection properties. They had a round shape, mostly
of diameter 50 µm, and were approximately neutrally buoyant in the fluid, with a
specific gravity of 1.03–1.05. A number of particles with size in the range 30–100 µm
were added and the particle density in the fluid was high. This wide distribution of
particle sizes improved performance, as each local image pattern had a better chance
of being unique. It should be noted that the axial position, x =0, for both vertical and
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horizontal slices, was actually located close to the nozzle at x =3–5 mm, to exclude
the intense reflection from the nozzle when the digital images were recorded. But for
convenience, it is still denoted as x = 0 in this paper if not otherwise stated.

A Pulnix TM 745 interline-transfer, black and white CCD video camera was used
to take the digitized images. These images were captured on a PIII PC fitted with an
ITI PC-Vision frame grabber board, which was then used to compute velocity fields
of the flow, using an algorithm provided by Professors A. Fincham and G. Spedding.
This video camera could also capture and save analogue video when connected to a
VCR.

2.4. Calculation of flow quantities from CIV data

Time-averaged flow fields in horizontal slices were assumed to be axisymmetric due
to the circular geometry of the jet and the test tank. For example when calculating
the instantaneous circulation on horizontal slices of the jet, integration took place
along a circle at each radius, i.e.

Γ = wr =

∫ 2π

0

w(x, r, θ)rdθ =

K−1∑
k=0

w(x, r, k�θ)r�θ

where �θ = 2π/K . Values are non-dimensionalized using: axial distance from the
nozzle exit, giving x/D; radius, giving r/R; axial velocity, giving u/U ; radial velocity,
giving v/U ; circulation, giving Γ/(2πΩR2); and azimuthal velocity, giving w/(ΩR),
where the velocity vector u = (u, v, w) in the cylindrical coordinate system (x, r, θ).

For time-averaging flow fields on vertical or horizontal slices of the jet, 120 flow
field realizations, N = 120, were used with the time step �t ≈ 0.4 s between them. The
sampling rate, 1/0.4 s−1, was about eleven times faster than the rotation rate of the
nozzle when S =1 and Re= 1000, i.e. Ω = 1/4.38 revolution s−1, and the recording
time, 48 s, covered about eleven full revolutions under this condition. Again using the
circulation as an example, the time-averaged mean quantity is then given by

Γ =
1

T

∫ T

0

Γ (t) dt =
1

N

N−1∑
n=0

Γ (n)�t

with the root-mean-square (RMS) value of the corresponding fluctuation defined as

Γ ′ = ([ Γ (t) − Γ ]2)1/2 =

(
1

N − 1

N−1∑
n=0

[ Γ (n) − Γ ]2

)1/2

.

The azimuthal vorticity of figure 6, for example, was calculated from the instantaneous
axial and radial velocities on a vertical slice of the jet:

ωθ (x, r) =
∂u

∂r
− ∂v

∂x
=

u(x, r) − u(x, r − �r)

�r
− v(x, r) − v(x − �x, r)

�x

where �x and �r are the axial and radial spatial step of the meshed velocity fields
calculated by CIV.

3. Flow visualization
Flow visualization studies were undertaken on model flow A. For most studies, a

moderate Reynolds number Re = 1000 was chosen with a wide range of swirl number
S = 0–1.1 to cover four regimes: non-swirling jet with S =0, weakly swirling jets in the
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Figure 3. Instantaneous photographs with laser sheet illumination of a central, vertical slice
of the jets: (a) S = 0, (b) S = 0.44, (c) S = 0.80, (d ) S = 1.03. Re= 1000, i.e. U =2.74 cm s−1 for
flow A.

range 0 <S < 0.6, strongly swirling jets before vortex breakdown with 0.6 <S < 0.88,
and stable vortex breakdown for S > 0.88.

3.1. Before breakdown

Without swirl (Ω = 0, i.e. S =0), the jet evolved downstream, while Kelvin–Helmholtz
instability, resulting from the axial velocity difference between the jet and the ambient
fluid, led to the tendency for the laminar shear layer shed from the nozzle exit to roll
up into discrete and axisymmetric vortex rings at x ≈ 2D (figure 3a). These vortex
rings grew in the streamwise direction while propagating at about half of the velocity
of the mean flow. Vortex pairing was observed further downstream and accounted
for most of the spreading of the jet (see e.g. Browand & Laufer 1977). The local
vortex shedding frequency decreased in the positive axial direction until x � 5D, where
the flow reached a fully turbulent state downstream and distinct vortices could no
longer be observed. The region between the nozzle exit and the first roll-up position,
0 � x � 2D, was called the laminar region, where the amplitudes of instability waves
were relatively small. Viewed from horizontal slices, the diameter of the jet increased
as a vortex ring approached from upstream, and then decreased as the ring left this
axial location and propagated further downstream. A secondary azimuthal instability
was visible in horizontal slices downstream of the laminar region, as a vortex ring
passed through it.

With Re fixed and the swirl rate increasing slowly from zero, streaklines in the jet
became helical due to the solid-body rotation of the flow. The rotation direction of
the mean flow was from right to left on the vertical slice of the jet in figure 3(b–d ),
and clockwise on horizontal slices if viewed from upstream in figure 4(b–d ). Vortex
rings maintained their axial symmetry upstream and became tilted downstream. An
azimuthal shear-layer instability evolved between the rotating jet and the stationary
ambient fluid. This type of vortex rolled up in a direction opposite to that of the solid-
body rotation, while it co-rotated with the jet (figure 4a). These instability vortices
were only visible in horizontal cross-sections and were rapidly convected away by
the mean flow. Viewed as horizontal slices downstream of the laminar region, these
vortices grew stronger when a vortex ring passed by from upstream, and became
weak or even disappeared as the vortex ring propagated further downstream, i.e. a
similar behaviour to the secondary azimuthal instability found in the vortex rings in a
non-swirling jet. For weakly swirling jets, the axial shear-layer instability led to vortex
rings that still dominated the flow, and the vortices due to the azimuthal shear layer
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Figure 4. Instantaneous photographs of a horizontal slice of the jets: (a) S =0.44 at x =D,
(b) S = 0.63 at x = 0.5D, (c) S = 1 at x = 0.5D, (d ) S = 0.90 at x = 1D. Re= 1000. In (b) and
(d ), the trace of helical waves, marked as ‘1’, ‘2’ and ‘3’, is shown for one revolution, e.g. t0 = 0,
t1 = 0.25T , t2 = 0.5T , t3 = 0.75T and t4 = T , where T is the time for the nozzle to rotate one
full turn.

were considered to be secondary. Small-scale random turbulence grew in the shear
layer and made the flow visibly and measurably more turbulent than the non-swirling
jet.

Swirl expanded the mixing region so that the jet spread faster than a non-swirling
one (see § 4.1.1), and the entrainment of ambient fluid was higher. The laminar region
became shorter at larger swirl number, and the fully turbulent region was located
further upstream, e.g. at x ≈ 3D for S = 0.44.

As S increased further, the flow became more complicated and irregular (figure 3c),
and vortices associated with instability of the azimuthal shear layer grew stronger
(figure 4b). When S was above the first critical value, i.e. Sc1 ≈ 0.60, the shear layer
lost its axial symmetry, and helical waves grew and replaced vortex rings to become
the dominant vortex structure. The breakup of the flow symmetry from the origin, and
the existence and evolution of intense vortex spirals, were detected first from the study
of the azimuthal vorticity contours calculated from the velocity field on the vertical
cross-section of the jet (see § 3.3.1). They were confirmed by careful observation of
the dyed jet. More details can be found in § 3.3 and Liang (2003). The vortex core
was relatively stable and laminar close to the nozzle exit. After that, the flow rapidly
became fully turbulent at x � 2D. At the same time, small-scale vortices, e.g. random
turbulence and weak helical waves, grew and made the larger-scale vortices irregular
and unorganized. This competition and interaction of instabilities made the vortex
spiral very unstable and hard to visualize, especially as the flow approached the
condition of vortex breakdown.

3.2. Vortex breakdown

Vortex breakdown has been defined as an abrupt flow transition with a free stagnation
point/region on the axis followed by a reverse flow and a fully turbulent region
(figures 3d and 4d ). The critical swirl number for breakdown to appear and stabilize
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Figure 5. Instantaneous velocity vector images on a central, vertical slice of jets after
breakdown. (a) At S = 0.86, the vortex pair that defines the interior of the incipient vortex
breakdown is axisymmetric, stationary and of large size with a narrow reverse flow between
them. (b) At S = 0.90, vortices are asymmetrically located, shed downstream in time and are
smaller with a wide reverse flow in between. For larger S, the jet spreads more rapidly with
breakdown located closer to the nozzle exit. Re= 1000.

in the flow is Sc2 = 0.88 at Re = 1000 in the present experiments. At S between 0.86
and 0.88, vortex breakdown was unsteady and oscillated axially over a fairly wide
range of amplitude (see Liang 2003 and Liang & Maxworthy 2005). The stagnation
point/region existed far downstream, x � 4D, for S = 0.83–0.86, but no well-organized
breakdown structure was formed at these early stages.

After the vortex breakdown had stabilized, the flow became regular with fewer
small-scale vortices in the shear layer. The vortex breakdown and strong helical
waves in the shear layer were well defined and clearly visible (figures 3d and 4d ).
The jet spread much faster (see § 4.1.1) and the entrainment rate of ambient fluid was
high. This highly mixed region moved closer to the nozzle exit as S increased further.

Details of the inner structure of vortex breakdown for various degrees of swirl
are demonstrated by instantaneous velocity vector images recorded on vertical cross-
sections of jets (figure 5a, b) for flow A. At S = 0.86, downstream of the stagnation
point, there was what appeared to be a near-axisymmetric and stationary vortex ring,
m = 0, i.e. a counter-rotating vortex pair when viewed as a vertical slice of the jet
in figure 5(a). At a larger value of S, e.g. 0.9, two vortices were shed together and
propagated along the conical shear layer, as in the lower left-hand side of figure 5(b).
These were manifestations of counter-winding helical vortices.

The near-axisymmetric breakdown was only observed at swirl numbers just before
the stable vortex breakdown appeared, i.e. in the range S = 0.86–0.88. It had a smaller
divergence angle and was located further downstream. The flow upstream was still
jet-like. This flow type was unsteady, and the bubble frequently disappeared and
then reappeared. At larger swirl number, i.e. S � 0.88, the asymmetric spiral structure
became well-organized and was located closer to the nozzle exit. The flow developed
a central velocity defect at the nozzle exit, see example figure 8, i.e. the upstream
effect of breakdown propagated into the nozzle (see § 4.2.1).

The conical axial shear layer became double-sided as vortex breakdown stabilized
close to the nozzle exit (figures 5b and 6). The inner (wake) shear layer, between
the reverse flow and the conical jet, was centrifugally stable, and its vortex structure
defined the type of spiral vortex breakdown; while the outer (jet) shear layer, between
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the spreading jet and ambient fluid, was where the centrifugal instability existed. In
these two shear layers, the helical vortex lines were aligned, but with the axial and
the azimuthal vorticity pointing in opposite directions.

3.3. Details of vortex spiral morphology

3.3.1. Spiral configuration

Before discussing the morphology of the vortex field in detail it is necessary to
define precisely the meaning of each of the words and symbols used. In the literature
on the subject this has not often been done and this omission has caused great
difficulty in interpreting many of the previous results. Following Martin & Meiburg
(1994), the phase function of the disturbance at a fixed time is defined as (kx + mθ),
where x is in the direction of the mean axial flow and θ increases in the direction
of the basic rotation. With these definitions a mode with m positive (+m) has a
line of constant phase with a sense of winding in the opposite direction to the basic
rotation and is called counter-winding, i.e. with increasing x a point on a line of
constant phase moves in an azimuthal direction opposite to that of the basic rotation.
Conversely, a helix with m negative (−m) has a sense of winding in the same direction
as the rotation and is called co-winding. Additionally, the disturbance is said to be
co-rotating if a point on a line of constant phase rotates in the same direction as
the underlying rotation and counter-rotating if it rotates in the opposite direction. It
should be noted that in many theoretical studies, the sign of m is reversed for wakes,
since the direction of the base axial flow is defined by the axial velocity difference. A
detailed discussion can be found in Gallaire & Chomaz (2003b).

Also, one useful, physically based, way to discuss the results that follow is to note
that in the present experiments, the lines of constant phase and the finite-amplitude
vortex structures that evolve were always aligned with the mean vortex lines of
the basic flow field. This result is physically reasonable and is confirmed by some
available theories, e.g. Martin & Meiburg (1994), and experimental observations, e.g.
for swirling free jets after breakdown by Billant et al. (1998). Contradiction can also
be found in theories, e.g. Gallaire & Chomaz (2003b), and experiments, e.g. for flows
before breakdown in Billant et al. (1998).

Vortex spirals observed in the present experimental investigation co-rotated with
the jet, and their phase speed was the same as the rotation rate of the nozzle exit,
Ω , as shown in figure 4(b, d). But their inclination, or their sense of winding, was in
the direction opposite to that of the mean swirl. In our present convention, these are
designated as m positive modes. Figure 6(a) shows a sample of the spatial evolution
of vortices calculated from DPIV velocity fields as m =+2 at S = 1.03. Figures similar
to this for different values of S can be found in Liang (2003) and Liang & Maxworthy
(2005). Here for clarity, vortex spirals were reconstructed only in the outer shear layer.
The number of spirals in the flow equalled the number of vortices that appeared at a
fixed point on one side of the jet, during one revolution, on the vertical cross-section.
This process is illustrated on figure 6(b) where one revolution is divided into 11
intervals and the appearance of a new vortex at a fixed location near the nozzle
exit initiated a new revolution. This vortex was then followed at each interval as it
propagated downstream and thus the vortex helix could be reconstructed.

3.3.2. The most unstable modes

From the present investigation, the most unstable mode in the shear layer was m = 0
for non-swirling and weakly swirling jets with S <Sc1 ≈ 0.6, and large-scale vortex
rings dominated the shear layer. When S was increased above Sc1, vortex spirals
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Figure 6. Spatial and temporal evolution of the vortex spirals, m= +2 at S = 1.03, Re= 967,
i.e. U = 2.65 cm s−1. One revolution is divided into eleven intervals and then each vortex is
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(b) During one revolution t0–t11, two vortices appear on the left side of nozzle exit, one at t0
and the other at t5, which belong to the black and grey spirals respectively.

evolved and became the dominate vortex structure in the flow. The most unstable
modes were m =+2 or +3 before breakdown, i.e. Sc1 < S < Sc2 = 0.88. Examples are
shown in figure 4(b) e.g. m = +3 at S = 0.63 from a horizontal cross-section x = 0.5D.
After vortex breakdown S � Sc2, the spiral structure became regular and clearly visible.
As vortex breakdown reached its steady state, spirals m =+1, +2 coexisted. For most
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Figure 7. The movement of the stagnation region driven by the vortex spiral m= +1, S = 1.02,
Re= 1000. (a–d ) vertical slice of the jet; (e, f ) horizontal slice at x =0.5D. The distorted
stagnation region is indicated by an arrow. The mode m= +2 has a moderately large amplitude,
as shown in (b–f ).

cases, m =+1 was the most unstable mode and grew dramatically downstream of the
stagnation region, e.g. in figure 4(d ) at S = 0.9 for a horizontal slice at x = D. Mode
m =+2 was relatively strong upstream of the stagnation region (figure 4c) even when
the flow was dominated by m =+1 downstream. Weak helical waves can also be
observed together with the strong vortex spiral m =+1 in figure 4(d ).

3.3.3. Observation of weak helical waves with higher azimuthal wavenumber

Along with the large-scale well-defined vortex spirals, there existed weaker and
smaller-scale helical vortices, m =+4, +5 in figure 4(d ). They do not appear in the
vorticity contour pictures of figure 6, for example, where only those contours with
high vorticity values are shown.

Further observation of these weak vortices was undertaken. By slowly traversing
the horizontal laser sheet from the nozzle exit to downstream, these weak vortices
were found to be composed of helical waves, which had similar temporal and spatial
evolution to the strong helical waves. However these waves were much weaker, lacked
organization and maintained their structure only for a short axial distance.

3.3.4. Wave induced oscillation of the stagnation region

As discussed in more detail in § 5 at large values of S, the mode m =+1 grew
rapidly from the conical shear layer that made up the vortex breakdown. As a result
there was an interesting interaction between it and the stagnation region. It distorted
this region as it evolved and rotated around the axis. The result is shown clearly in
figure 7 where the distorted tip of the stagnation region is shown to move in response
to the wave rotation. In figure 7(a, b), the marked tip is shown interacting with the
helical wave, marked vortex 1, as the wave moves around the stagnation region. The
helical wave reappears as the marked vortex 2 on the left side in figure 7(c, d), and
the marked, distorted tip moves with it. Similar migration of the distorted stagnation
region is shown in figure 7(e, f ) on a horizontal slice x = 0.5D. For this case, mode
m =+2 still had a moderately large amplitude.
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4. Quantitative flow measurements
4.1. Preliminary measurements

Measurements of the mean flow were made on flow A at Re =967 with S varying from
0 to 1.1. In this section, time-averaged flow fields of the swirling jet are shown on a
vertical cross-section which contains the axis and covers the region x = 0–4.5D, and on
horizontal cross-sections at different axial locations, x = 0, 0.5D, D, 1.5D, 2D, 3D.

4.1.1. Spreading of the mean flow

Figure 8 demonstrates the spreading of the jet as S increased at fixed Re = 967,
where the half-angle of spreading, α, is defined as the angle between the line joining
the half-maximum axial velocity, u/um = 0.5 (that in the outer shear layer after vortex
breakdown), and the line parallel to the axis. The behaviour of the spreading rate for
large swirl number is different from that found by Chigier & Chervinsky (1967), for
example, who found a smoothly increasing value of the half-angle as the swirl rate
increased. As shown in figure 8 there was a much faster increase of the spreading
rate as S approached and passed the critical value for vortex breakdown. At S = 0.83,
the spreading rate becomes large far downstream, x � 4D, where a stagnation region
formed. α reached 48◦ at S = 1.03 with the bubble located close to the nozzle exit.

4.1.2. Centrifugal instabilities

Compared with the non-swirling jet, the additional presence of swirl can result in
an unstable radial stratification of the angular momentum, which leads to centrifugal
instability. Rayleigh’s inviscid criterion is a necessary and sufficient condition for
instability for inviscid rotating flow:

dΓ 2/dr < 0,

i.e. the ‘stratification’ of angular momentum in a rotating flow is unstable if it decreases
radially outwards. In the present experiments with the test tank stationary and Γ > 0
everywhere the inviscid criterion becomes

dΓ/dr < 0,

i.e. the azimuthal shear layer is centrifugally unstable if the circulation decreases in
the radial direction from the rotating jet to the ambient fluid.
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The theoretical profile of the dimensionless circulation in the jet in solid-body
rotation is parabolic as a function of radius, at x =0, and has a sharp peak at r = R

with a value of unity. After the peak, the circulation drops immediately to zero.
However, in practice, this result could not be realized for several reasons. The laser
sheet could only be placed close to the nozzle exit, i.e. x = 3–5 mm, not right at it, in
order to have enough particles to define the flow, and, more importantly, to exclude
the intense reflection from the nozzle which degraded the image. At this distance
from the nozzle exit, no matter how short, the axial and azimuthal components of
velocity had already diffused. Other technical limitations included: (i) The variable
distance between the horizontal laser sheet and the CCD camera underneath the test
tank. Thus our ability to zoom in was limited by the need to cover a large fraction
of the flow field. (ii) The finite number of pixels of the CCD array used to capture
the flow field. Thus in reality, the measured profiles close to the nozzle were smooth
and continuous and had a peak lower than unity.

Figure 9 shows the spatial distribution of the time mean circulation and the
corresponding axial vorticity,

ωx =
1

r

∂wr

∂r
,

at five axial stations, x = 0, 0.5D, D, 1.5D, 2D for S = 0.38, 0.78, 0.91, 0.98 at Re =
967. For weakly swirling jets, say at S = 0.38, circulation profiles at axial locations
relatively close to the nozzle, x = 0–1.5D, were similar and ‘hill’ shaped with the
peak located at r = 0.92R. Downstream, x � 2D, the circulation distribution became
flat with a relatively low amplitude due to the spreading and decay of the jet. The
flow maintained solid-body rotation at small radii, and at large radii the circulation
decreased and eventually dropped to zero. The jet flow could then be separated into
two regions: the region before the maximum circulation is designated as the vortex
core, and the area at larger radii as the shear layer. At steady state, fluid of the test
tank was forced by vorticity recirculation to slowly co-rotate with the jet but with
a much smaller angular momentum. The decrease in circulation in the azimuthal
shear layer resulted in centrifugal instability/negative axial vorticity in all cases. The
instabilities enhanced the mixing efficiency of the jet with the ambient fluid, and the
flow decayed faster than a non-swirling jet. The solid-body rotating region, i.e. vortex
core, was relatively stable or less turbulent since it was centrifugal stable.

When the swirl number increased further to S = 0.78, the circulation distribution
at x =0 was similar to that for S = 0.38, with almost the same value of the peak
and reached this peak at the same radial location. Away from the nozzle exit, the
maximum of the circulation amplitude decayed faster for larger swirl number and
the region of decreased circulation spread out rapidly.

After vortex breakdown, S >Sc2, the circulation distribution was still ‘hill’ like at
x = 0, reaching its maximum at the same radial location as for swirling jets before
breakdown. But the amplitude of the maximum was slightly lower. Away from the
nozzle exit, the circulation not only decayed faster, but its maximum was located at
a larger radial position. This displacement of the circulation maximum to a larger
radius, as well as that of the axial velocity maximum, is the signature of a vortex
breakdown. The stagnation region was located around x =0.5D for these two swirl
numbers. At x = D, downstream of the stagnation region, the maximum circulation
was located further away from the axis, and even outside the region of investigation,
e.g. at S = 0.98. In many ways it appeared as if the jet was split by an object inserted
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Figure 9. Dimensionless mean circulation and the corresponding axial vorticity versus r/D,
for S = 0.38, 0.78, 0.91, 0.98, at axial locations x =0, 0.5D, D, 1.5D, 2D, Re= 967 for flow A.
(N = 120, �t =0.4 s).

into the flow. Within the breakdown structure, the circulation amplitude was almost
zero.

4.1.3. Criteria for breakdown from the measured velocity profiles

Based on experimental, theoretical and numerical studies, Spall, Gatski & Grosh
(1987) proposed a criterion for the onset of symmetric vortex breakdown that the
Rossby number Ro (or inverse swirl ratio) satisfies:

Ro = u(r∗, x0)/(r
∗Ω) � Roc = 0.65 (4.1)
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for Re � 100, where u is the axial velocity, r∗ the radius of the maximum of the swirl
velocity w, x0 an axial location far upstream from the stagnation point, and Ω the
core rotation rate near the vortex centreline r = 0. Based on previous theories and
experiments, Billant et al. (1998) provided another criterion:

Si =

[ ∫ ∞

0

w2(r, x0)/rdr

]1/2

u(0, x0)
� Sic = 0.707, (4.2)

and found a good agreement with their experiments for different Reynolds numbers
and two nozzle diameters, D1 = 4 cm and D2 = 2.5 cm. Their critical Rossby number
was calculated to be Roc = 0.51–0.65 for D1 and Roc = 0.80–0.84 for D2.

For the present experimental data, the criteria (4.1) and (4.2) were calculated close to
the nozzle exit, x0 = 3–5 mm, to give Roc = 0.69, Si = 0.66 for S = 0.86 and Ro =0.82,
Sic = 0.69 at Sc2 = 0.88. The critical swirl parameter of the present investigation,
Sic = 0.69 at Sc = 0.88, agrees with the value 0.707 proposed by Billant et al. (1998).
The value of Si increased quickly for larger swirl rates as the bubble moved closer
to the nozzle exit and caused u(0, x0) to decrease rapidly. The criterion based on
the Rossby number only worked for the smaller swirl rate, at which condition, a
symmetric yet unstable breakdown occasionally occurred downstream. Roc = 0.69
for S = 0.86 is quite close to the value 0.65 proposed for the onset of symmetric
breakdown.

4.2. Mean and fluctuating flow measurements

The following measurements of the mean and the fluctuating flow and further
instability analyses in § 5 are based on flow B.

Distributions of mean and root-mean-square (RMS) fluctuations of the axial and
the radial velocity fields are shown in figures 10 and 11 for S = 0, 0.42, 0.71, 1.05,
with the mean value, u or v, in the left column and the RMS fluctuation, u′ or v′,
in the right column. The Reynolds number was 1000. The amplitude of the mean
velocities has been multiplied by 0.25 so that profiles with 0.25D axial distance
between them do not overlap. The observation domain was chosen to focus on the
region 0 � x � 2.5D, where the most important instabilities were initiated and evolved.

4.2.1. Mean components

A weak initial over-shoot of the mean axial velocity at the jet edge found in flow
A was eliminated in flow B, for which the turbulence level for the axial and the
radial velocities was smaller at the spatial origin, and turbulence evolved slower with
the fully turbulent region located further downstream. The jet characteristics were
changed slightly by the change in the mean profiles, so that now the critical swirl
number for stable vortex breakdown increased slightly from Sc2 = 0.88 to Sc2 = 0.95,
indicated the sensitivity of this measurement to the details of the profiles and the
difficulty in comparing exactly with previous results.

Before vortex breakdown, the form of the axial velocity profile was a flat-topped
and became more jet-like downstream (figure 10). For strong swirl rates S � Sc2, vortex
breakdown appeared on the jet axis. Around and downstream of the stagnation region,
the axial velocity maximum was displaced radially from the axis, and the basic profile
became wake-like. A reverse region with negative axial velocity was found downstream
of the stagnation point. The breakdown structure moved upstream as S increased. At
large swirl number, the stagnation point was located close to the nozzle exit, and then
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Figure 10. Left column: dimensionless mean axial velocity u/U (×0.25) versus r/D, right
column: dimensionless RMS axial velocity fluctuation profiles u′/U versus r/D along the axis,
at (a) S =0, (b) S = 0.42, (c) S = 0.71, (d ) S = 1.05, Re= 1000, N = 120, �t = 0.4 s. Flow B.
Symbols + mark radial locations where further instability analysis was undertaken, see details
in § 5.1.

the axial velocity at x =0 was of the wake type, i.e. the influence of the breakdown
had propagated into the nozzle.

For all rotation rates up to breakdown, the radial velocity was up to 10% of
U within the shear layer (figure 11). Only when the swirl rate was high enough
for breakdown to occur, i.e. S � Sc2, was the mean radial velocity comparable with
the other two components of velocity. This region of large mean value was located
upstream and within the spreading jet between inner and outer shear layers.
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Figure 11. Left column: dimensionless mean radial velocity v/U (×0.25) versus r/D, right
column: dimensionless RMS radial velocity fluctuation profiles v′/U versus r/D along the
axis, at (a) S = 0, (b) S = 0.42, (c) S =0.71, (d ) S =1.05, Re= 1000. (N = 120, �t = 0.4 s).
Flow B.

4.2.2. RMS fluctuations

For all flows, upstream of the fully turbulent region, the fluctuation distributions of
the axial velocity had maxima off the axis with high levels of turbulence in the shear
layer (both outer and inner shear layers after breakdown), and a low level of turbulence
in the neighbourhood of the axis, i.e. in the vortex core and the bubble. The amplitude
of turbulence increased and the high-turbulence region spread as S increased. Before
vortex breakdown, fluctuation distributions far downstream, e.g. x > 4D for non-
swirling and weakly swirling jets and x � 2.5D for strongly swirling jets, were
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flat with high amplitude, while the turbulence level in the vortex core was com-
parable with that in the shear layer. The flow became fully turbulent in this region.
The rapid mixing of the fluid in the shear layer and the vortex core was only observed
in strongly swirling jets, while the non-swirling or weakly swirling jet reached its
fully turbulent region further downstream and outside the observation frame. This
fully turbulent region moved upstream and spread outwards and inwards as the swirl
number increased. After vortex breakdown, S > Sc2, the downstream region of the jet,
for example x > 2D for S = 1.05, contained weak turbulent and mean flow. Turbulence
in the wide reverse flow was relatively weak.

Before vortex breakdown, even though the mean radial velocity was weak when
compared with axial and azimuthal components, relatively high levels of the fluctu-
ating radial velocity appeared in the shear layer and the fully turbulent region, which
shows that turbulence was always three-dimensional. After breakdown, for example
at S = 1.05, the turbulent level in the radial velocity was high in the outer centrifugally
unstable shear layer as shown in figure 11(d ). The axial velocity fluctuation was large
both in the inner and the outer shear layers, and the amplitude in the inner shear
layer was found to be larger in figure 10(d ).

4.2.3. Spatial distribution

The enhanced axial decay of the flow with increasing S, as demonstrated by the
axial distributions of the maximum axial velocity (figure 12a) and the value on the
centre-line (figure 12e), is consistent with the enhanced mixing and spreading of the
flow by the introduction of swirl, especially after vortex breakdown. The amplitude
of the mean radial velocity increased in the shear layer for strongly swirling jets, e.g.
at S = 0.71 as shown in figures 11(c) and 12(c). Only when the swirl rate was high
enough for breakdown to occur, i.e. S � Sc2, was the mean radial velocity comparable
with the other two components of velocity, e.g. at S = 1.05 in figures 11(d ) and 12(c).

The fluctuation of the axial velocity was relatively high at the spatial origin for
the non-swirling jet, i.e. u′

max =0.08U at x = 0 for S = 0 (figure 12b). This turbulence
was introduced by the facility. As mentioned earlier, we did not use a contraction
at the nozzle exit, which would have produced a more laminar and uniform jet, but
which would induce a jet-like inflow when the rotation rate was high (see e.g. Billant
et al. 1998). This relatively high level of turbulence in the inflow decreased spatially
within the laminar region, i.e. u′

max decreased to 0.05U at x = 0.75D. After that, u′
max

started to increase axially but with a small amplitude, and reached 0.07U at x = 2.5D.
For swirling jets, turbulence grew quickly in the shear layer, u′

max increased to 0.25U

at x =1.75D for S = 0.42, and at x = 1.25D with S = 0.71. After breakdown, u′
max

was relatively high at the nozzle exit, e.g. u′
max = 0.13U at x = 0 for S =1.05. This

maximum quickly increased to 0.3U at x = 1.25D, and decreased thereafter.
The spatial distribution of the maximum radial velocity fluctuation shown in

figure 12(d ) is similar to that of the maximum axial velocity fluctuation (figure 12b)
except for the case with S =0.42. Under this condition the radial velocity in the mean
flow is hardly visible, and the radial velocity fluctuations are low upstream of the
fully turbulent region.

Because of the technical difficulty of recording three components of the velocity,
only two components were counted when calculating the turbulent kinetic energy of
figure 12(f ), the axial and radial velocity. We assumed that the spatial evolution of
the turbulent kinetic energy in the azimuthal direction was similar to that in the axial
and the radial directions, and the lack of the azimuthal component would have only
a minor effect on our conclusions. Profiles of the integrated fluctuation of the kinetic
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Figure 12. The spatial distribution of the maximum of (a) the mean axial velocity, (b) the
RMS fluctuating axial velocity, (c) the mean radial velocity, (d ) the RMS fluctuating radial
velocity; (e) the mean axial velocity along the centreline; (f ) the turbulent kinetic energy, at
S =0, 0.42, 0.71, 1.05, Re = 1000.

energy within the observation domain

x = [0, 2.5D], r = [−2D, 2D]

are plotted in figure 12(f ) for S =0, 0.42, 0.71, 1.05. This integrated value has been
normalized by the kinetic energy in the mean flow at x = 0, i.e.∫ 2D

−2D

(u′2 + v′2)r dr |x∫ 2D

−2D

(u2 + v2)r dr |x=0

.
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For non-swirling jets, S = 0, the perturbation level was low in the whole observational
domain. As soon as rotation was introduced into the flow, the turbulent kinetic
energy became larger at the nozzle exit. The profile was flat within the laminar
region. After that, the amplitude started to grow and grew more quickly for the larger
swirl numbers. After vortex breakdown, the turbulent kinetic energy was large at the
nozzle exit and grew rapidly. The amplitude reached a large value downstream of the
stagnation region and then decreased rapidly.

5. Self-excited oscillations
5.1. Power spectra

The spectra are represented by the power spectral density squared, psd 2, of the
dimensionless axial velocity fluctuation:

psd = |FFT[u′(t)/U ]|, (5.1)

where FFT is the fast Fourier transform, and u′(t) is the fluctuation component
of the axial velocity field, u′(t) = u(t) − u, where u is the mean. In most cases, u(t)
was recorded for N = 120 realizations with a sampling time step of �t = 0.4 s. After
application of the FFT, the maximum resolvable frequency fmax = 0.5/�t = 1.25 Hz,
and the bandwidth or resolution �f = (1/�t)/N ≈ 0.02 Hz. For the non-swirling jet,
the axial shedding frequency of vortex rings was measured and presented as the
dimensionless Strouhal number Str = f D/U on a central, vertical slice of the flow.
After the introduction of rotation, the azimuthal wavenumber, m, was used. It is
defined as the frequency divided by the rotation rate (in revolution s−1) of the nozzle
exit, i.e. m = f/Ω . This definition was deemed appropriate since it was observed that
the wave rotated at the same rate as the basic rotation rate of the jet. For most
cases, the high-amplitude peak at low frequencies/mode numbers which presents the
underlying unsteadiness of the flow, has been filtered out to give better idea of the
spectral distribution at interesting frequencies/mode numbers. The Reynolds number
equals 1000 for all the power spectra presented below.

Power spectra were calculated at four swirl numbers S = 0, 0.42, 0.71, 1.05, which
represented the four regime discussed earlier: the non-swirling jet, weakly swirling jets,
strongly swirling jets with vortex spirals m =+2, +3 before breakdown, and vortex
breakdown with spirals m =+1, +2. To properly compare the spectral behaviour for
different swirling rates, series of data were collected at radial locations where the
RMS fluctuation amplitude reached its maximum in the shear layer (in the outer
shear layer if the mean flow was wake-like), as marked by ‘+’ in figure 10.

5.1.1. Spectra are broadband at S = 0

For the non-swirling jet, at S = 0, the spectra were broadband with low amplitude,
psd 2 = 0.00005–0.0001, at all Strouhal numbers from the nozzle exit to x � 2.5D. The
flow was laminar and no large-amplitude, vortex-ring-like structures were generated
within the region of investigation.

5.1.2. Spectra are locally peaked for S = 0.42

For the weakly swirling jet, e.g at S =0.42, the spectrum was still broadband at
the nozzle exit x =0 but with the amplitude, psd 2 = 0.0001–0.0002, was higher than
that at x = 0 for the non-swirling jet. It was assumed that some turbulence had
been introduced into the flow circuit at the rotating seal. At x = 0.25D, the spectrum
started to peak at m =+2, +5, +6, +8. Modes m = +5, +6, +8 decayed quickly and
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Figure 13. Spatial growth of spectra at x = 0–2.5D for (a) S = 0.42, (b) 0.71 and (c) 1.05.

were ignored. Only the mode m = +2 grew in energy until x = D and then decayed.
At x = D, another mode, m = +1, appeared and started to grow. At x = 2D, mode
m =+1 reached its maximum value in spectral energy, psd 2 ≈ 0.0013, and then
decayed quickly. Downstream, x = 2.5D, the spectrum became broadband but with an
amplitude that was relatively high for m ≈ 4.5 with corresponding Strouhal number
Str = 0.63. This Strouhal number was close to the value for vortex rings generated
downstream in non-swirling jets. In figure 13(a), the spatial growth and decay of the
most unstable modes is evaluated from the peaks in the spectral distributions. Detailed
spectral distributions at different swirl numbers can be found in Liang (2003).

5.1.3. Spectral peak at m =+2 for S = 0.71

For strong swirling jets before breakdown, e.g. at S = 0.71, the spectrum was
broadband with psd 2 = 0.0001–0.0002 at the nozzle exit but with relatively high
amplitude, psd 2 = 0.0002–0.00035, at m =+2 and +4. Away from the nozzle exit,
m =+2 peaked quite obviously and grew quickly when propagating downstream. It
reached its maximum psd 2 ≈ 0.0032 at x = D − 1.5D and then decayed. At x = 2.25D,
mode m =+1 suddenly peaked with high amplitude and immediately grew to
psd 2 ≈ 0.004 at x =2.5D. It was not clear if m =+1 was another unstable mode
independent of mode m =+2, or is the subharmonic mode of m = +2 due to possible
vortex pairing downstream. Mode m =+3 appeared in the shear layer in the interval
0.75D � x � 2D, but with relatively low amplitude, psd 2 � 0.0015, which was of the
same order as the locally unstable modes m =+2 and +3 observed at S =0.42.
Figure 13(b) shows the spatial evolution of the spectral peaks.

5.1.4. Spectral peak at m =+1 for S = 1.05

For strongly swirling jets after breakdown, e.g. at S = 1.05, the spectrum was no
longer broadband at the nozzle exit x =0, and m =+2 had a strong peak with
amplitude psd 2 ≈ 0.0014. Away from the nozzle exit, m =+2 decayed smoothly
and continuously. Mode m =+2 still had a distinct peak at x = 0.25D and then
degenerated into background noise for x � 0.5D. As m =+2 lost its distinctness,
mode m =+1 started to play a major role in the spectral distribution at x � 0.5D.
Mode m =+1 appeared at the spatial origin x =0 but with a relatively low amplitude
psd 2 = 0.0003, and then it grew to psd 2 = 0.0007 at x = 0.25D. Thereafter it grew
rapidly and reached saturation at x =0.75D with the spectra energy maximum
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psd 2 = 0.0033. This strong mode maintained its high energy for a relatively larger
axial distance, i.e. x =0.75D–1.75D. Another strong mode m =+0.5 suddenly peaked
at x = 1.5D with spectra energy psd 2 = 0.0027 and remained with this high energy
to x = 1.75D. At x � 2D, the peaks of both strong modes m =+0.5 and m =+1
disappeared, and the spectrum became broadband with high energy distributed at low
frequencies. After breakdown, some nonlinear secondary interactions may occurred
in the flow downstream, say x � 2D, and the widely spread jet became fully turbulent.
The spatial evolution of the spectral peaks is shown in figure 13(c).

5.1.5. Conclusion to § 5.1

Vortex rings, m =0, dominated non-swirling and weakly swirling jets but they were,
at most, convectively unstable, and were excited by external noise and convected away
by the mean flow. In both weakly and strongly swirling jets before breakdown, the
helical wave m = +2 peaked, grew and then decayed when propagating with the mean
flow. However, based on analytical observation and spectral study, it is suggested that
for weakly swirling jets this helical wave was excited by some external perturbation,
which might have been introduced from the rotating seal and evolved as moderately
low-level noise at the nozzle exit. First, the spectral maximum it could reach in
weakly swirling jets was significantly smaller, e.g. 2.5 times smaller at S =0.42 than
for strongly swirling jet at S = 0.71. Secondly, downstream, before the fully turbulent
region, the spectra peaked at a Strouhal number close to the value for non-swirling
jets, i.e. tilted vortex rings dominated the shear layer as shown in earlier observations
(figure 3b). Lastly as discussed in § 3.1, helical waves grew stronger when a vortex
ring passed by from upstream and became weak or even disappeared as the vortex
ring propagated further downstream. The LadHyX group also observed and reported
this phenomena.

To certify whether oscillations generated at S = 0.71 and 1.05 are the consequence of
global instabilities, it is first necessary to rule out the possibility that these oscillations
are caused by some discrete, strong, external forcing specific to our facilities. Recall
the broadband power spectra distribution at the nozzle exit and at x =2.5D, under
conditions S = 0 and 0.42. They reveal an absence of discrete forcing frequencies at
m = +1, +2 or their harmonics, either from the flow at the nozzle exit or from the
fluid exiting the tank. This suggests that the background forcing is not the cause of the
distinct spectra peaks at S = 0.71 and 1.05. These distinct peaks in the spectral records
indicate the possible existence of limit-cycle modes. But this is only a preliminary
conclusion, and further investigations need to be carefully designed and performed.

5.2. Hopf bifurcation

A second experiment was performed to establish whether the oscillations are an
indication of the existence of a super-critical Hopf bifurcation, which can be modelled
by the super-critical Landau equation.

As reviewed by Huerre & Monkewitz (1990), near critical conditions, the character-
istic overall amplitude |A| of the global response is governed by the forced Landau
equation (Landau & Lifshitz 1959):

d|A|/dt = α1|A| − α2|A|3 + α. (5.2)

The constant α1 determines the temporal amplification rate during the period of
exponential growth if the bifurcation is super-critical, i.e. when α2 > 0 and S >Sk . Sk

is the critical control parameter, when the Reynolds number is fixed, at which the
oscillation first emerges first and α is the external forcing. When there is no forcing
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Figure 14. (a) Spectral distribution at x = 0.75D, for S = 0.42, 0.71, 0.88, 1, 1.05, shown by
solid lines. Experiments were repeated independently at S = 0.43, 0.5, 0.72, 0.9, 1.05, shown by
dashed lines. (b) The impulsive increase of the spectral energy versus swirl number S shows
the appearance of Hopf bifurcations at Sk1 and Sk2 for modes m= +1 and +2.

of the flow, i.e. α = 0, the saturation amplitude satisfies

|A|sat(α = 0) ≈ α3(S − Sk)
1/2 (5.3)

when S � Sk , where α3 is a positive constant and can be expressed in terms of α1 and
α2.

The spectral energy distribution at the axial location x = 0.75D is shown by solid
lines in figure 14(a), for S = 0, 0.42, 0.71, 0.88, 1, 1.05. The amplitude of the spectral
energy of modes m =+1 and +2 is plotted in figure 14(b) by a square and a triangle



Experiments on swirling jets 143

symbol respectively. Experiments were repeated independently at S = 0, 0.43, 0.5, 0.72,
0.9, 1.05, and corresponding results are plotted by dashed lines in figure 14(a) and
star and plus symbols in figure 14(b).

The profile of the amplitude of spectral energy versus the swirl number reveals that
the saturation amplitude of two modes, m =2 at S � Sk1 and m =+1 at S � Sk2, can
be modelled by the solution to the unforced super-critical Landau equation

psd 2 = |A|2sat(α = 0) ∝ (S − Sk). (5.4)

The linear amplitude dependence was extrapolated to predict the critical swirl number
when |A|sat =0. Two critical swirl numbers have been found, Sk1 = 0.62 for m =+2,
and Sk2 = 0.87 for m =+1. Sk1 is close to the critical value Sc1 = 0.6 which separates
the weakly and strongly swirling regimes for flow A. A non-zero forcing amplitude,
which is never achievable in experiments, may lead to an under-prediction of critical
values of the Hopf bifurcation from a plot of |A|sat versus (S − Sk)

1/2. Thus the real
Sk2 most likely coincides with the critical swirl number for vortex breakdown of flow
B, Sc2 = 0.95. Hereafter we will use Sc1 and Sc2 as the appropriate critical parameters.

It should be noted that unlike theoretical or numerical studies, the external forcing
is always present in experiments. This non-zero forcing amplitude became larger
as soon as rotation was introduced into the system and spatially increased as the
vortex grew and propagated, e.g. |A|2sat(α = 0) = 0.00065 for m =+2 and 0.00015 for
m = +1 at x = 0.75D. To avoid this difficulty and thereby under-evaluate the critical
swirl number when a Hopf bifurcation was initiated, a least-square-error fitting was
carried out relying on points with relatively large spectral energy |A|2sat(α), i.e. at
larger swirl numbers. For a rapidly increasing function, this fitting and the calculated
criterion Sk should be more reliable than calculations which include the questionable
points at smaller swirl numbers. However, it is understood that the existence of the
moderately high external noise in weakly swirling jets and high turbulence level for
strongly swirling jets makes the instability nature elusive for mode m =+2 before
breakdown, and any discussion about it remains only as a suggestion and awaits
further clarification.

The saturation amplitude of vortex spirals m =+1 and +2 has been found to be
proportional to (S − Sc)

1/2. This linear dependence is strong circumstantial evidence
that these two oscillations are of the super-critical Hopf bifurcation type.

5.3. Forced experiments

Experiments were performed to study the influence of external forcing on the strength
of the oscillations in the flow shear layer and, thereby, determine whether the
flow response was due to self-excitation or the continuous spatial amplification
of disturbances from upstream. If the swirling jet was dominated by the spatially
amplifying disturbance for S <Sc, we would expect that the shear-layer response to
external excitation would be proportional to the forcing level. If, in fact, a global mode
emerged for S > Sc, the flow would become dominated by an amplifying perturbation,
which would eventually saturate and render the flow insensitive to low-level external
forcing.

As reviewed by Huerre & Monkewitz (1990), the forced Landau equation (Landau &
Lifshitz 1959) with low-amplitude forcing is of the form

|A|sat(α) = |A|sat(α = 0) +
α

2[|A|sat(α = 0)]2
(5.5)
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Figure 15. Forced experiments: vortex generators are attached to outside of the nozzle and
inserted into the flow at the nozzle exit. Forcing of |m| = 1 mode is shown.

when α � [|A|sat(α =0)]3. For a globally stable system which may be convectively
unstable or locally absolutely unstable, the flow response is linearly dependent on
low-level external forcing α. According to experimental observations, some spatially
developing flows, e.g. co-flowing mixing layers, homogeneous jets, wakes at Reynolds
numbers below the onset of the von Kármán vortex street, and boundary layers on a
flat plate, behave as ‘noise amplifiers’. Another class of spatial developing flows which
are self-excited and sufficiently super-critical, are globally unstable and called ‘flow
oscillators’. This kind of oscillation has a well-defined frequency throughout the whole
flow, and its amplitude is insensitive to external excitation, i.e. |A|sat(α) = |A|sat(α = 0).
Good examples are mixing layers or jets with a sufficiently large counter-flow
(Strykowski & Niccun 1991), hot jets (Monkewitz et al. 1990), wakes at Reynolds
numbers above the onset of the von Kármán vortex street (Mathis, Provansal &
Boyer 1984; Strykowski 1986; Monkewitz 1988), and boundary layers on a rotating
disk (Lingwood 1995, 1996).

External forcing at the observed strong helical mode numbers was provided by
vortex generators mounted at the nozzle exit. Wires were attached to the outside
wall of the nozzle, with the perpendicular end pointed to the centre of the nozzle
exit at x = 0 (figure 15). The part inserted into the flow had three length scales, lx ,
lr and lθ in the axial, radial and azimuthal direction respectively. Either one or two
vortex generators were applied to introduce external forcing with helical wavenumber
m =+1 or +2. The amplitude of forcing was specified by the azimuthal length inserted
into the flow, lθ , for which three values, 0.01, 0.05 and 0.15 in. were used. For all
cases, lx = 0.025 in. and lr =0.075 in. were fixed.

The profile of the amplitude of flow response (represented by the psd at m = +1 or
+2) versus the forcing level (represented by lθ /D) at each forcing mode for different
swirling rate, is plotted in figure 16. The power spectral amplitude was still calculated
at the radial location with the maximal RMS value in the shear layer (outer shear
layer if the axial velocity was wake-like).

At the axial location x = 0.75D when the flow was being forced at m = +1
(figure 16a), the flow response increased proportionally to the forcing level until
the forcing level was relatively high for S = 0, 0.42, 0.71, while the flow response
seemed insensitive to external forcing at S = 1.05. We believe that this insensitivity
was caused by the temporal amplification and saturation of the global mode m =+1.

At the same axial location x = 0.75D but when the flow was being forced at
m =+2 (figure 16b), the flow response was insensitive to the forcing level for S =0.88,
which provided strong evidence that the global unstable mode m =+2 has emerged.
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Figure 16. Response of the shear layer of swirling jets to forcing at m= +1 or +2. The
forcing level is specified by the dimensionless azimuthal length of the vortex generator inserted
into the flow, lθ /D. The amplitude psd is the power spectra of the dimensionless axial velocity.
(a) forcing at m= +1, data collected at x = 0.75D; (b) forcing at m= +2, data collected at
x =0.75D; (c) forcing at m= +2, data collected at x =1.5D.

However, the spectral amplitude increased linearly with the forcing level at S = 0.71,
and the forcing seemed not have much effect on the shear layer with S = 0.42. Under
relatively more stable conditions, such as at S = 0.42 and 0.71, the spatial amplification
of the external or self-excitation perhaps had not evolved enough at the axial location
x = 0.75D, thus might not give an accurate conclusion. The axial location of the
investigation was then increased to x = 1.5D for S = 0.42 and 0.71 with the flow being
forced at m =+2. Figure 16(c) shows the insensitivity of the shear layer to external
forcing for S = 0.71, and linear dependence when S = 0.42. This suggests that the
globally unstable mode m =+2 eventually emerged at the strong swirling rates before
vortex breakdown.

Comparisons of instantaneous unforced and forced flow fields, e.g. vorticity
contours, do not reveal any clearly significant differences. The results of figure 16
appear to be the most suitable way of determining any differences that do in fact
exist.

It is understood that the evidence provided above does not furnish conclusive proof
that the bifurcation observed at S >Sc is the consequence of an unstable global mode.
This conclusion can only be verified by including an investigation of the transient
flow response.

5.4. Transient experiments

Due to the moderately high amplitude of mode m = +2 before Sc1, it is difficult to
capture the transient growth of this mode by rapidly increasing the rotation rate from
below the critical value to above.

Fortunately, the mode m = +1 evolved as, at most, a weak mode for S <Sc2

especially upstream, but grew quickly for S > Sc2 and reached its maximal amplitude
while it was still close to the nozzle exit. From careful observations of the flow as
a stagnating point/region formed downstream, moved upstream and stabilized at a
certain axial location, an interesting phenomenon was noted. The vortex spiral m =+1
evolved quickly and became strong in the shear layer only after the bubble had moved
upstream and found a stable location. The exponential growth of m =+1 may be
recordable during the relatively long process of bubble generation and stabilization
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Figure 17. The axial location of the stagnation point versus time. Impulsive increasing of
swirl number from S = 0.9 to 1.13 takes place at time 60�t = 24 s.

if we set the final swirl number close to Sc2. Thus, after increasing the swirl number
impulsively from S <Sc2 to S > Sc2, the damping of mode m =+2 could be observed
and then the appearance and amplification of m =+1 at the appropriate locations.

5.4.1. Generation of the mode m =+1

Limited by the present data capture and recording capacity, initial and final values
of swirl number were chosen as S =0.90 and 1.13 respectively. The footprint of
the vortex breakdown was recorded by the time history of the axial location of the
stagnation point along the centreline, as shown in figure 17. N = 60 instead of 120
was used to calculate the mean, RMS and spectra of velocity fields during each period
of �T = N�t =24 s, with �t = 0.4 s. The history was divided into 11 time periods T1

to T11. Impulsive (in 0.5 s) increase of the swirl number from S = 0.9 to 1.13, was
performed at time t = 60 �t = 24 s, at the beginning of the period T2. The stagnation
point first appeared around x =1.3D at t = 43 s and then moved upstream. It reached
x = 0.5D–0.6D at t = 72 s and stayed there, oscillating with low amplitude (figure 17).

To keep data spatially consistent before and after the breakdown occurred, the
point for spectral study had to be chosen close to the nozzle exit where the flow had
not yet spread much after vortex breakdown. At the same time, this point had to
be far enough away from the nozzle exit to capture the evolving instabilities. The
location, x =0.25D and r = 0.45D, was chosen and is marked as ‘+’ in the mean axial
velocity field (figure 18) during each period.

As shown in the spectra of figure 18(b) (i), mode m =+2 has a distinct peak with
high amplitude, psd 2 ≈ 0.003, during the period T1 when S = 0.90. The spectra are low
and flat at all other mode numbers. After the swirl number was increased impulsively
to S = 1.13 at t = 24 s, the end of T1, the mode m =+2 damped immediately and the
spectral distribution became broadband during the transition T2 to T4 (figure 18b (ii–
iv). Mode m =+1 started to peak during the period T4 to T5 (figure 18b (v)) and
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Figure 18. (a) The mean axial velocity field during each time period, and (b) the spectral
distribution, psd 2, at the location marked by +, i.e. x =0.25D, r = 0.45D.

maintained this distinctness thereafter. The amplitude of the spectral energy for mode
m = +1 increased a little and eventually oscillated with magnitude psd 2 = 0.0018–
0.0025.

The observation of the emerging and growth process of the mode m = +1 after the
rapid increase in swirl number demonstrates that m =+1 results from the temporal
amplification of the impulse response and finally this oscillation overwhelms the
whole area. We conclude that the vortex spiral m =+1 is an unstable global mode
for S >Sc2.
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5.4.2. Growth rate of the mode m = +1 at x =0.25D, r = 0.45D

Efforts were made to record the exponential growth of the mode m = +1 after
breakdown had stabilized upstream, and calculate the growth rate α1. For an unstable
global/self-excited oscillation, |A| is governed by

d|A|/dt = α1|A|, =⇒ loge|A| = α1t + constant. (5.6)

The turbulence level was already high before breakdown due to the existence of the
strong mode m =+2 and a large amount of random turbulence. Thus we could not
capture the temporal growth of m =+1 by simply tracing the RMS amplitude of
fluctuating velocity fields in the shear layer. We had to measure the growth of m = +1
using a spectral study.

Based on the same data series, but using N = 20 to distinguish the integer mode
number in the spectral distribution, the amplitude of spectral energy at m =+1 is
calculated as psd 2 = 0.0002 at t = 72–80 s, 0.0007 at t = 80–88 s, and 0.0019 at t =88–
96 s (detailed distributions can be found in Liang 2003). The exponential growth
rate of the mode m =+1 at S = 1.13 was estimated to be α1 = 0.071 by a first-order
polynomial fitting, i.e. ln(psd) = 0.071t + constant. It is close to the value calculated
by Ruith et al. (2003) for the unstable global mode m =+1 in their case at S =1.095,
α1 = 0.066.

5.4.3. Spatio-temporal growth of mode m = +1

The answers to some questions still remained elusive, such as: When and where
was the instability initiated, i.e. where was the wave maker? Downstream, in the wake
region, in the inner shear layer of the breakdown structure which was centrifugally
stable, or in the outer shear layer which was centrifugally unstable? When and how
did these instabilities amplify, expand, overwhelm the whole flow and become globally
unstable/self excited? Thus not only must the temporal growth of the instability wave
m =+1 at one position be measured, but also the whole flow needed to be studied
further.

From careful study of the spectral distribution at each radial and axial location
during every period, which is now 8 s long for N =20 and �t = 0.4 s, the spatio-
temporal growth of the instability wave m = +1 was revealed and is shown in figure 19.
Here, the study is limited to the region r =[−2D, 0] and x = [0, 1.25D].

The first and probably the most interesting observation is that the wave m =+1 first
appeared in the vortex core during the period t =32–40 s in figure 19(e), before a clear
indication of the stagnation due to vortex breakdown could be observed in the mean
axial velocity distribution in figure 19(f ) t = 40–48 s. After checking instantaneous
vector images during those two periods, i.e. t = 32–40 s and t = 40–48 s, the earliest
time for the formation of the stagnation point/region was found to be t = 41.6 s. A
wake region did exist along the axis during the period of figure 19(e), t = 32–40 s, with
a structure like a tadpole with the head reaching upstream to x = D and a following
tail at x � 1.5D (see figure 20a at t = 38.3 s). A wave packet of m = +1, x = [D, 1.25D]
and r = [0, 0.008D], first appeared within the head of the tadpole shape (figure 19e
at t = 32 − 40 s).

At t = 41.6 s, the stagnation point/region formed within the wake structure and
vortex breakdown occurred. This breakdown structure had three stagnation points
with two ‘one-cell’ bubbles in between, one centred at x = 1.4D and the other centred
at x = 1.8D (figure 20b at t = 44.4 s). The existence of the helical wave m =+1 in the
vortex core (figure 19f at t = 40–48 s) might be responsible for the deficit of bubbles
on the right side of the axis. These two one-cell bubbles were very unsteady and
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Figure 19. The location of spatio-temporal growth of wave m= +1 is marked on the mean
axial velocity field for each time period, with N = 20 and �t = 0.4 s. The symbol ∗ is used
if spectra are distinctly and continuously peaked at m= +1, and 
 is used if spectra are
distinctly peaked at m= +1 but this peak disappears during some of the periods after its first
appearance.

quickly disappeared. A vortex pair, i.e. a nearly axisymmetric bubble, was formed at
t = 46.8 s (figure 20c at t = 46.8 s) with counter-rotating vortices on each side of the
axis. A reverse flow existed between them and two stagnation points bounded the
bubble. This near-axisymmetric bubble became asymmetric quickly, then propagated
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Figure 20. Vector images around the vortex breakdown. (a) At t = 38.8 s, a tadpole-shaped
wave region is formed in the vortex core; (b) t = 44.4 s, two ‘one-cell’ bubbles are generated and
bounded by three stagnation points; (c) t =46.8 s, a near-axisymmetric bubble is generated
and bounded by two stagnation points; (d ) t = 50.8 s, the bubble becomes asymmetric;
(e) t = 72 s, breakdown stabilizes at x = 0.5D and after that, m= +1 takes over the inner
shear layer; (f ) t =112 s, breakdown stabilizes at x = 0.4D and after that, m= +1 takes over
the outer shear layer and overwhelms the whole flow.

downstream and disappeared. Another axisymmetric bubble formed at t =49.2 s and
stayed in the flow for about 1 s. The structure of the breakdown became asymmetric
(figure 20d at t = 50.8 s). Vortices between the reverse region and the spreading jet
became spiral and started to propagate downstream. During the transition, as the
breakdown structure moved upstream, t = 48–64 s (figure 19g, h), the instability wave
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packet m = +1 did not expand, but stayed around the axis just above and downstream
of the first stagnation point. When breakdown moved further upstream, the reverse
flow became wider (figure 19i at t = 64–72 s). The instability wave m =+1 became
weak along the axis and in the reverse flow, but grew quickly in the inner shear layer.
After t = 72 s, the bubble found its stable position at x = 0.5D (figure 20e at t = 72 s),
oscillating with a small amplitude. The helical mode m =+1 took over the inner shear
layer and gave the breakdown structure a spiral shape (figure 19j–l at t =72–96 s).
The second stagnation point moved downstream to the fully turbulent region and
became unsteady. A small packet of the helical wave m =+1 appeared at large radii
at x = D during the period t =64–72 s, but did not grow at first (figure 19i–l at t = 64–
96 s). After t = 96 s, instability waves m =+1 quickly grew in the outer shear layer
and overwhelmed the whole flow after t = 112 s (figure 19m–o at t =96–120 s). As
the helical wave grew in the outer shear layer, the breakdown structure grew slightly
and stabilized at x =0.4D. The reverse flow grew and covered a larger area. The
fully turbulent region moved further downstream together with the second stagnation
point, and finally disappeared from the observation frame (figure 20f at t = 112 s).

In conclusion, the instability wave m =+1 was initiated in a small region, which
formed in the vortex core and at the axial location of a local wake-like flow and where
vortex breakdown would occur a short time later. The wave packet with m =+1, which
was located around the axis in the head of the wake region before breakdown, or
just above and underneath the stagnation point shortly after breakdown, grew only
slowly until the breakdown structure moved upstream, amplified in size and stabilized.
After that, the helical wave m =+1 grew rapidly in the inner shear layer and gave
the breakdown structure a spiral shape. Many authors have called this flow type a
‘spiral breakdown’ or ‘single-helix’, but it really seems to be due to the instability
of a nominally axisymmetric flow. The instability wave m =+1 grew and expanded
quickly into the outer shear layer. Then the helical mode m =+1 overwhelmed the
whole flow and became a globally unstable/self-excited oscillation. The wake region
in the neighbourhood of the stagnation point served as the wave maker and imposed
its frequency on the whole flow.

As one possible explanation for these observations, the authors suggest that the
wake region around the axis of the jet became absolutely unstable (AU) during the
period t = 32–40 s, since instability m = +1 was initiated there and was not convected
away (figure 19e). This AU region expanded slightly as breakdown occurred and
moved upstream during the period t = 40–56 s (figure 19f, g). It is possible that this
AU region was not large enough for m =+1 to be self-excited, and the flow was still
marginally globally stable. When the bubble moved further upstream and grew larger
during the period t = 48–56 s, the AU region expanded even more (figure 19g), and
the flow possibly became globally unstable thereafter. The oscillation m =+1 became
self-excited, grew exponentially, dominated the inner shear layer and gave the bubble
a spiral shape (figure 19i ). Only when the spiral m =+1 had developed fully in the
inner shear layer, was the oscillation excited in the outer shear layer where it then
grew exponentially. After that they rotated together and dominated the whole flow
(figure 19m–o).

It should be noted that the initiation and expansion of the wave packet m =+1, as
well as the growth rate of m = +1 calculated at the point x = 0.25D and r = 0.45D, i.e.
ln psd =0.071t + constant, may be an under-estimate. The inner shear layer became
spiral at t = 50.8 s (figure 20d ). However, the flow was still developing with the
breakdown structure growing in amplitude and moving upstream. The unsteadiness
of the flow before the bubble was fully developed and stabilized, as well as the highly
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turbulent status of the shear layers before the mode m =+1 was self-excited, could
delay the appearance and under-predict the amplitude of the distinct peak for mode
m =+1 in the power spectral distribution.

6. Conclusions and discussion
6.1. Conclusions

The competing roles of K–H instability and centrifugal instability have been studied
in the present experimental investigation. K–H instability in the axial shear layer,
leading to vortex ring formation, dominated non-swirling and weakly swirling jets for
0 � S <Sc1. After the introduction of rotation to the free jet, the combined axial and
azimuthal shear layers became unstable. Co-rotating counter-winding helical waves
were produced but they remained as a secondary instability for small swirl numbers.
The main instability consisted of vortex rings that maintained their axisymmetry
upstream, and became tilted downstream. For strongly swirling jets before breakdown,
i.e. Sc1 <S <Sc2, helical waves broke the axisymmetry of the flow from the spatial
origin and replaced vortex rings to become the main vortex structure. The most
unstable modes were m =+2 and +3. The presence of many weak helical waves
and random turbulence made these vortex spirals irregular and disorganized. After
vortex breakdown, small-scale turbulence was suppressed and the large-scale helical
structures became regular and clearly visible. When vortex breakdown reached its
steady state, strong helical waves m =+1 and +2 coexisted (figure 7), with m = +1
having the largest amplitude. The helical modes co-rotated with the jet with a phase
speed which was the same as the rotation rate of the nozzle exit, while their inclination,
or the sense of winding, was in the direction opposite to that of the mean swirl. The
winding direction of these helical modes, both in the centrifugally unstable outer (jet)
shear layer and in the centrifugally stable co-rotating inner (wake) shear layer, were
aligned with local helical vortex lines of the basic flow. The spirals in both the inner
and outer shear layers had the same oscillation frequency and propagation speed and
were paired together. In all cases the instability had the characteristics of a helical
K–H instability and not a centrifugally dominated one. This point is discussed in
more detail in § 6.2.

At several places in the present paper, where it seemed appropriate, allusion has been
made to concepts of AI/CI, globally excited instability, etc. A number of experiments
have been performed to try to determine whether or not such concepts hold for the
present flow. While such concepts are very difficult to prove unambiguously, four
different pieces of experimental evidence suggest that, for strongly swirling jets, two
global modes, m =+2 before vortex breakdown and m =+1 after breakdown, become
self-excited, a behaviour identified as a super-critical Hopf bifurcation. These four
pieces of experimental evidence are: (i) the amplitude of oscillation has very distinct
peaks at the specified frequency/mode number m = +1 and +2; (ii) the amplitude of
oscillation is proportional to (S −Sk1,2)

1/2, where Sk1 = 0.62 for m =+2, and Sk2 = 0.87
for m =+1 (these criteria may be slightly under-estimated and it is likely that the
real Sk2 coincides with the critical swirl number for vortex breakdown, Sc2 = 0.95);
(iii) the amplitude of the oscillation is insensitive to low-level external forcing for
modes m =+1 and +2 above the corresponding critical swirl number, while the
amplitude is linearly dependent on the low-level external forcing for these modes
under these critical values; (iv) a spectral study of the impulse response as the swirl
number is suddenly increased from around the critical value Sc2 to above it, e.g. from
S = 0.9 to 1.13, shows the immediate damping of the mode m = +2 after the impulse
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and the exponential growth of the mode m =+1 when breakdown stabilizes at a
certain axial location. The onset of the unstable global mode m =+1 is probably
related to the existence of a certain region of local absolute instability (AI) located
in the wake region in the neighbourhood of the stagnation point/region.

6.2. Discussion

An attempt is made here to compare the present experimental results to some of the
existing theories and experiments.

The phase speed of each unstable helical wave observed in the present experiments
is the same as the rotation rate of the nozzle, both in direction and absolute value,
both before and after breakdown. It should be noted that the rotation rate of the
vortex core of the inlet flow is calculated to be exactly the same as that of the nozzle
(figure 9a). This phenomenon was first found by observation of the vertical and
horizontal slices (figures 3 and 4) of the flow. It was then confirmed in the power
spectral study, in which the spectral peak was very clearly at some multiple of the
rotation rate of the nozzle, which was predicted as the most unstable mode from
earlier analogue observation. Support was found in two recent experimental papers. In
an investigation of a confined swirling flow by Kurosaka et al. (2003), an axisymmetric
vortex breakdown bubble was most affected and transformed to a co-rotating spiral
vortex breakdown structure with m =+1, shortly after the introduction of forcing with
m = +1 and in a frequency range that corresponded to a rotation rate almost equal
to that of the vortex core of the inlet flow. The second supporting instability study by
Gallaire, Rott & Chomaz (2003) used the same swirling free jet as Billant et al. (1998)
and Loiseleux et al. (2000). In these earlier papers by this group, the natural rotation
rate of the most unstable helical waves was found to be 1/3 smaller than that
of the vortex core of the inlet flow, but in this latest paper, they corrected the
ratio 1/3 to 1/10. Assuming that this newly reported value of the ratio is more
accurate and reliable, the forcing phase speed, which was used by them to achieve
the most amplified helical waves, with |m| =2 and 3 before breakdown, is one order
of magnitude, 10 times, greater than the natural value of 1/10, i.e. the same as the
rotation rate of the inlet vortex core. This agrees well with the present observation.
Furthermore, using the stability calculations of Gallaire & Chomaz (2003b), we
find agreement that the calculated phase speed of their m =+1 and +2 modes in
a temporal stability study is close to the rotation rate of the vortex core at the
inlet. Of course, the velocity profiles used in the above experimental and numerical
investigations are somewhat different from ours and the comparison is only suggestive
and not absolute.

A necessary condition was derived by Howard & Gupta (1962) for the temporal
instability of vortex flows. This condition is a function of:

G =
m

kr
, Cx =

r

w

du

dr
and Cθ =

r

w

dw

dr

K = (1 + Cθ ) − GCx − 1
8
[Cx + G(Cθ − 1)]2 < 0 (6.1)

where (u, w) and (ωx, ωθ ) are velocity and vorticity in the axial and azimuthal
directions (x, θ). According to Rayleigh’s criterion, the flow is centrifugally unstable if
1 + Cθ < 0. At the same time, Ludwieg (1960, 1961, 1964) found a sufficient condition
but his theory was limited to vortex flows in a small gap. Leibovich & Stewartson
(1983) derived a sufficient condition applicable to columnar vortex jets in unbounded
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domains,

w
d(w/r)

dr

[
d(w/r)

dr

dwr

dr
+

(
du

dr

)2]
< 0. (6.2)

According to this criterion, the unstable modes are aligned with a helix angle which
equals

θ1 = tan−1(dw/dr − w/r)/(du/dr) = tan−1(Cθ − 1)/Cx

whereas the vortex lines are aligned along

θ2 = tan−1 ωx/ωθ = tan−1 −(dw/dr+w/r)/(du/dr) = tan−1[−(1+Cθ )/Cx].

After applying to local velocity profiles available from the present experiments, these
two angles as well as the helix angle

θ3 = tan−1(−m/kr) = tan−1(−G)

corresponding to Howard & Gupta’s criterion at minimum value of K , were calculated
as a function of radius for strong swirling jets before breakdown and after breakdown
(figure 21a, b). The helical waves and the mean vortex are co-winding if the angle
has a positive value and are counter-winding if negative. The inlet region for flow
before breakdown and the wake region around the stagnation point after breakdown
are the most likely locations for instability initiation (also noticed by Gallaire &
Chomaz 2003b) and they were chosen for further study. The results were calculated
from the mean axial velocity at S =0.71 and 1.07 (figure 10) of flow B and from the
mean azimuthal velocity at S = 0.78 and 0.98 (figure 9) of flow A. For comparison,
instant images with vectors and vorticity contours on a vertical slice are shown in
figure 21(c) at S = 0.71 and 1.07 for flow B, and the approximate locations and
angles, θ4 = tan−1 2δx/πδr , of these counter-winding spirals are marked. As shown in
figure 21(b, c), the unstable waves proposed by Leibovich & Stewartson’s criterion, θ1,
are co-winding, whereas both vortex lines and helical waves observed in the present
experiments, θ2 and θ4, as well as the helix corresponding to Howard & Gupta’s
criterion at min(K), θ3, are counter-winding. One interesting result is that the helix
angle calculated from Howard & Gupta’s criterion at min(K) agrees very well with
the present experiments, e.g. θ3 = −28◦ or −30◦ whereas θ4 = −22◦ at x = 0◦ with
S = 0.71–0.78, and θ3 = −13◦ or −15◦ while θ4 = −7◦ or −9◦ at x = 0.5D for S = 1.07–
0.98. As pointed out by a referee there is no logical basis for the most unstable
mode to correspond with the minimum of K , and the present authors are in full
agreement with this statement. The points are included in figure 21 as a challenge
to the community of theoreticians to determine if such a result can be rigorously
justified or is simply an interesting coincidence. It should also be noted that even
though the helical waves estimated on instantaneous images have the same winding
direction as the mean vortex lines, their absolute angle, |θ4| =22◦ at S = 0.71 and 7◦

or 9◦ at S = 1.07, is obviously smaller than that of the latter which are |θ2| =40◦–50◦

at S = 0.71–0.78 and 20◦–25◦ at S = 1.07–0.98 (figure 21b, c).
Agreement with the present experiments can be found in calculations by Martin &

Meiburg (1994), Lim & Redekopp (1998), Loiseleux et al. (2000), Gallaire & Chomaz
(2003a) and Ruith et al. (2003) for cases of centrifugally unstable jets and centrifugally
stable wakes at the inlet, in which the axial and azimuthal shear layers coincide, and
to some extent the theory by Gallaire & Chomaz (2003b). Co-rotating counter-
winding helical waves which had the same winding direction as the mean vortex
lines in shear layers between the jet or wake and its surroundings, were found to
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Figure 21. The angle of the mean vortex lines and the unstable helical waves within the
outer shear layer at the inlet for a strong swirling jet before breakdown and around the
stagnation point for flow after breakdown. (a) Velocity profiles (u,w) and vorticity constants
(1 +Cθ, Cx). (b) The angle of the unstable wave θ1 = tan−1(Cθ − 1)/Cx proposed by Leibovich
& Stewartson (1983), of the mean vortex θ2 = tan−1 − (1 +Cθ )/Cx

◦ and of the helical wave
θ3 = tan−1(−G) corresponding to minimum K proposed by Howard & Gupta (1962) when
applied to the present base flow. (c) Spatial evolution of the vortex spirals, m= +2 at S = 0.71,
and m= +1, +2 at S = 1.07, Re= 1000. The angle of these counter-winding helical waves,
θ4 = tan−1 2δx/πδr , is noted. At S = 1.07, the black spiral is the stronger mode m= +1 which
has a strong companion vortex on the inner shear layer. Note the change in the scale of r
between (a, b), r/R, and (c), r/D.

be the most unstable. Similarily the theory of Loiseleux et al. (2000) agrees with
present experimental observations for non-swirling and weakly swirling jets, in which
the axial shear-layer instability leads to vortex rings, m =0, dominating the flow.
Experimentally, counter-rotating and co-winding helical waves were found before
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breakdown by the LadHyX group, Billant et al. (1998) and Loiseleux & Chomaz
(2003) based on observations of a swirling free jet with subtly different inlet velocity
profiles from the present ones (see comments in § 1). The former found m = −2
for moderate Reynolds numbers and m = −3 for larger Reynolds numbers before
breakdown, and the latter authors reported that the most unstable helical wavenumber
m ranged from −7 to −1 as S increased. Helical waves with high phase speed became
the most unstable at large swirl rates just before the onset of breakdown. Gallaire &
Chomaz (2003b) applied linear stability analysis to inlet velocity profiles that modelled
those of Billant et al. (1998), and found a counter-rotating co-winding mode, m = −2,
becoming AU for centrifugally unstable jets. This mode had a phase speed 1/3.3
times the rotation rate of the inlet vortex core at the critical swirl number where it
became AU. At a similar value of swirl rate, Loiseleux & Chomaz (2003) observed
the double-helix m = −2 counter-rotating with the jet with a phase speed 1/3 times
the measured rotation rate measured at x = 22 mm. As one possibility, it seems that
due to the subtle differences in the location of the maxima of the azimuthal and
axial shear layers the LadHyX group generated co-winding waves that were driven
by centrifugal instability, since the maximum azimuthal shear was at a radial location
where the axial shear was weaker. On the contrary our counter-winding waves, with
both shear layers coincident, were more aligned with the mean vortex lines. The
Rayleigh centrifugal instability is not relevant for these counter-winding helical waves
but, instead, a combination or competition of the K–H instability and the generalized
centrifugal instability of Ludwieg (1960, 1961, 1964) and Leibovich & Stewartson
(1983). It is possible that the nature of the instability depends very critically on the
relative thicknesses and radial displacements of the two shear layers (L. G. Redekopp,
private communication). It should be noted that in the temporal stability study by
Gallaire & Chomaz (2003b) of the Billant et al. (1998) velocity profiles, co-rotating
counter-winding modes m =+1, +2 and +3 were unstable but with lower growth rate
than those of the modes m � 0. For large swirling rates, the phase speed of m = +1
or +2, at its most unstable axial wavenumber, was close to the rotation rate of the
inlet flow, agreeing with the observations of the present experiments. However, since
m-positive waves were found by them to have smaller growth rates in the temporal
stability study, they were excluded from further study of the absolute/convective
nature of the instability.

Unfortunately, no theoretical or computational proof has been given for the
existence of locally absolutely unstable helical waves or globally unstable modes
applied to basic velocity profiles exactly the same as those of the present inlet flow.
Thus, interpretations of a local/global and convective/absolute instability nature have
been provided as suggestions only, especially for flows before breakdown. A spatially
developing numerical model of swirling jets has been recently studied by Ruith et al.
(2003), and the spiral type of breakdown was found to have a similar but not identical
spatial and temporal evolution to that observed in present experiments. There are
several points to be noted about that computational work. First of all, velocity
profiles of the inflow, i.e. at the spatial origin x = 0, were unchanged by the presence
of breakdown in contrast to the present work. Secondly, the shear layer of their
model was centrifugally stable at the spatial origin x =0, and centrifugally unstable
profiles only evolved around the breakdown bubble at large swirl number. Thus,
unfortunately, a general study of centrifugally unstable swirling jets was excluded.
Nonetheless interesting comparisons between that work and the present experiments
remain. In particular an m =+1 mode evolved initially somewhat downstream of the
breakdown bubble but it very rapidly spread upstream to encompass, and distort, the
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breakdown bubble itself. In this regard the final flow field was virtually identical to
that found in the present experiments. By showing that the wake flow after breakdown
was absolutely unstable they strengthen the assertion that the present flow was also
absolutely unstable and that it was likely to be a nonlinear global mode. Further
support for this point of view comes from recent work at LadHyX by Ruith et al.
(2004) which suggests that the observations of an unstable region downstream of the
breakdown region in Ruith et al. (2003) can be interpreted as being the result of the
breaking of the symmetry of the vortex breakdown to a nonlinear steep global mode,
in the sense of Pier & Huerre (2001), in the wake of the breakdown bubble. This
further implies that the observations of rapid spiral wave growth in the same region,
in the experiments presented in § 5.4.3, has a similar explanation.
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CTS-9523291. Discussions with Professors L.G. Redekopp, F.K. Browand, P. Huerre
and J.-M. Chomaz and Dr F. Gallaire, as well as the technical help of Professors
G. R. Spedding and A.M. Fincham are gratefully acknowledged. The authors also
wish to thank the reviewers for their helpful suggestions for improvement of an earlier
draft. Further experimental results are given in Liang (2003) and Liang & Maxworthy
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